torstai 6. huhtikuuta 2017

Luento 7.4. Äärellinen sananpituus; näytteenottotaajuuden muuntelu


Tänään tarkasteltiin äärellisen sanapituuden vaikutuksia. Tarkastelimme ensin mallia, jolla johdettin arvio AD-muunnoksen kvantisointivirheen varianssille, joka on suoraan verrannollinen syntyvän kvantisointivirheen tehoon. Tätä kautta määritellään SNR, eli signaali-kohinasuhde, eli häiriöetäisyys. Tämä suure kertoo jotain äänenlaadusta, ja saatavia tuloksia tullaan tarvitsemaan kappaleessa 9, kun päätellään montako bittiä signaalista uskalletaan poistaa kompressiossa ilman äänenlaadun havaittavaa heikkenemistä.

Jos ehtojen oletetaan olevan voimassa, voidaan osoittaa kohinan odotusarvon olevan nolla ja varianssin yhtä kuin 2^(-2b) / 12.


Yllä olevaa kaavaa voidaan edelleen jalostaa signaali-kohinasuhteen käsitteeksi (SNR), joka kertoo signaalin tehon suhteessa kohinan tehoon. Kun kaavaa pyöriteltiin, havaittiin jokaisen ylimääräisen bitin (per näyte) nostavan SNR:ää kuudella desibelillä.

Lopuksi johdettiin kaava varianssille suodatuksen jälkeen ja sekä tutkittiin suotimen kertoimien pyöristämisen vaikutusta. Tämähän täytyy tehdä aina kun suodin toteutetaan huonomman tarkkuuden alustalla kuin Matlab (esim. tällä 17-bittisellä DSP:llä).


Toislla tunnilla tutustuttiin desimointi- ja interpolointi-operaatioihin, jotka toimivat kokonaislukukertoimilla. Näitä yhdistelemällä saadaan kaikki rationaalikertoimet. Molemmat operaatiot tarvitsevat alipäästösuodattimen, joka on yleensä FIR, ja suunnitellaan normaaleilla menetelmillä. Suotimen siirtymäkaistasta todettiin, että se laitetaan aina rajataajuuden alapuolelle. Näin signaaliin tulee vähemmän virhettä kuin jos laskostumista pääsisi tapahtumaan.

Desimoinnissa tapahtuva näytteenottotaajuuden pieneminen toteutetaan yksinkertaisesti jättämällä näytteitä pois tasaisin väliajoin. Esimerkiksi kertoimella kolme jätetään vain joka kolmas näyte jäljelle. Tämä kuitenkin aiheuttaa laskostumista, koska signaalin sisältämät taajuudet pysyvät samoina mutta näytteenottotaajuus pienenee. Tämä saadaan luonnollisesti estettyä suodattamalla signaali ennen alinäytteistämistä sopivalla alipäästösuotimella.
Interpolointi puolestaan koostuu nollien lisäämisestä sekä tämän operaation tuottamien roskien poistamisesta. Nollien lisääminenhän tuottaa kopioita ja peilikuvia alkuperäisestä spektristä, jotka voidaan myös poistaa kätevästi alipäästösuodatuksella. Oikealla olevassa kuvassa on luennolla ollut esimerkki näytteenottotaajuuden kolminkertaistamisesta, jossa kahden näytteen väliin sijoitetaan aina 2 nollaa (yläkuva). Alakuvassa on tuloksen spektrogrammi, jossa näkyy selkeästi kolme versiota alkuperäisestä (kaista 0-4000 Hz) taajuuskaistasta (kopio-peilikuva-kopio).

 

Ei kommentteja:

Lähetä kommentti